--> Skip to main content

13 Contoh Soal Fungsi Invers dan Jawabannya

Pengertian Invers Fungsi
Jika fungsi f(x) dan g(x) terdefinisi dalam satu domain, sehingga fungsi identitas l(x) berlaku, maka fungsi g(x) dapat berlaku sebagai fungsi iners dari f.
Dituliskan dengan: f(x) ο f¯¹(x)  = f¯¹(x) ο f(x) = 1 

Fungsi f(x) mempunyai invers jika dan hanya jika f(x) fungsi bijektif (krespondensi satu-satu). Daerah hasil f(x) adalah daerah asal f¯¹(x) dan daerah asal f(x) adalah daerah hasil f¯¹(x).
Dituliskan dengan: Df(x) = Rf¯¹(x) dan Df¯¹(x) = Rf(x)

Sifat Invers Fungsi
Sifat invers suatu fungsi yaitu:
1. f(x) ο f¯¹(x) = f¯¹(x) ο f(x) = 1
2. (g ο f)¯¹(x) = f¯¹(x) ο g¯¹(x)

Demikian sedikut penjelasan tentang invers fungsi, selanjutnya akan saya berikan 13 contoh soal tentang invers fungsi beserta jawabannya.

Soal 1
Fungsi invers dari f(x)=(3x+4)/(2x-1) adalah….
Jawaban:
f(x)=(3x+4)/(2x-1)
Misalkan: y = f(x)
y = (3x+4)/(2x-1)
y(2x-1) = 3x+4
2xy – y = 3x+4
2xy-3x = 4+y
x(2y-3) = 4+y
x = (4+y)/2y-3
Dengan demikian,
f¯¹(x) = (4+x)/(2x-3)

Soal 2
Diketahui f(x) = x / (x+1) dan g(x) = 2x-1, maka (f ο g)¯¹(x) adalah…
Jawaban:
f(x) = x / (x+1) 
g(x) = 2x-1

(f ο g)(x) = f( g(x) ) 
= f(2x-1)
= (2x-1)/[(2x-1)+1] 
= (2x-1)/2x

Misalkan: y = (f ο g)(x)
y = (2x-1)/2x
2xy = 2x-1
2xy-2x = -1
x(2y-2) =-1
x = -1/(2y-2) 
Dengan demikian,
(f ο g)¯¹(x) = -1/(2x-2)

Soal 3
Fungsi f didefinisikan oleh f(x) = (3x+4)/(2x+1), x# - ½ . Jika f¯¹ invers dari f, maka f¯¹(x+2)  adalah…
Jawaban:
f(x) = (3x+4)/(2x+1)
Misalkan: y = f(x)
y = (3x+4)/(2x+1)
y(2x+1) = (3x+4)
2xy + y = 3x+4
2xy-3x = 4-y
x(2y-3) = 4-y
x = (4-y)/(2y-3)
f¯¹(x) = (4-x)/(2x-3)  

f¯¹(x+2)  =[4-(x+2)]/[2(x+2)-3] 
= (4-x-2)/(2x+4-3) 
= (2-x)/(2x+1), x#- ½ 

Soal 4
Fungsi f ditentukan oleh f(x) = (2x+1)/(x-3), x#3. Jika f¯¹ invers dari f, maka f¯¹(x+1) adalah…
Jawaban:
f(x) = (2x+1)/(x-3)
Misalkan: y = f(x)
y = (2x+1)/(x-3)
y(x-3) = (2x+1)
yx-3y = 2x+1
yx-2x = 1+3y
x(y-2) = 1+3y
x=(1+3y)/(y-2)
f¯¹(x) = (1+3x)/(x-2)

f¯¹(x+1) =[1+3(x+1)]/[(x+1)-2]
=(1+3x+3)/(x+1-2)
=(3x+4)/(x-1), x#1

Soal 5
Fungsi f ditentukan oleh f(x) = (2x+3)/(x-1), x#1. Jika f¯¹ invers dari f, maka f¯¹(x+2) adalah…
Jawaban:
f(x) = (2x+3)/(x-1)
Misalkan: y = f(x)
y = (2x+3)/(x-1)
y(x-1) = 2x+3
yx-y = 2x+3
yx-2x = 3+y
x(y-2) = 3+y
x = (3+y)/(y-2)
f¯¹(x) = (3+x)/(x-2)

f¯¹(x+2) = (3+(x+2))/((x+2)-2) 
= (5+x)/x, x#0

Soal 6
Jika (f ο g)(x) = x²-4x dan g(x)=x+1 maka f¯¹(x) adalah…
Jawaban:
g(x)=x+1
(f ο g)(x) = x²-4x 
f( g(x) ) = x²-4x
f( x+1 ) = (x+1)² - 2x-1 – 4x
=(x+1)² - 6x – 1 
=(x+1)² - 6(x+1) + 5
f(x) = x² - 6x + 5 =(x-3)² - 4

Misalkan y=f(x)
y = (x-3)² - 4
(x-3)² = y+4
x-3 = √(y+4)
x = 3 + √(y+4)
f¯¹(x) = 3 + √(x+4)

Soal 7
Diketahui f(x-2) = (x-2)/(2x-3), x#3/2 dan f¯¹ adalah invers fungsi f(x). Rumus f¯¹(3x+1) adalah…
Jawaban:
f(x-2) = (x-2)/(2x-3), x#3/2
f(x-2) = (x-2) /[2(x-2)+1]
f(x) = x/(2x+1)

f(x) = x/(2x+1)
Misalkan: y = f(x)
y = x/(2x+1)
y(2x+1) = x
2xy+y=x
2xy-x = -y
x(2y-1)=-y
x = -y/(2y-1)
f¯¹(x) = -x/(2x-1)

f¯¹(3x+1) = [-(3x+1)]/[2(3x+1)-1] 
= (-3x-1)/(6x+2-1) 
= (-3x-1)/(6x+1), x#-1/6

Soal 8
Fungsi f:R→R dan g:R→R ditentukan dengan f(x) = 5/x, x#0 dan (f ο g)(x) = (3x-4)/2x, x#0 maka g¯¹(-5) adalah…
Jawaban:
f(x) = 5/x
(f ο g)(x) = (3x-4)/2x
f( g(x) ) = (3x-4)/2x
5/g(x) = (3x-4)/2x
5(2x) = g(x) (3x-4)
10x = g(x) (3x-4)
g(x) = 10x/(3x-4), x#4/3

g(x) = 10x/(3x-4)
Misalkan: y = g(x)
y = 10x/(3x-4)
y(3x-4) = 10x
3xy-4y = 10x
3xy = 10x + 4y
3xy – 10x = 4y
x(3y-10) = 4y 
x = 4y/(3y-10)
g(x)¯¹ = 4x/(3x-10)
g(-5)¯¹ = 4(-5)/(3(-5)-10)
= -20/(-15-10) 
= -20/-25 
= 4/5

Soal 9
Fungsi f:R→R dan g:R→R ditentukan dengan f(x) = 3x-4 dan g(x)= 2/(x-1), x#1 maka (g ο f)¯¹(x+2) adalah…
Jawaban:
(g ο f)(x) = g( f(x) ) 
= g( 3x-4 ) 
= 2/(3x-4-1) 
= 2/(3x-5)

(g ο f)(x) = 2/(3x-5)
Misalkan: y = (g ο f)(x)
y = 2/(3x-5)
y(3x-5) = 2
3xy – 5y = 2
3xy = 2 + 5y
x = (2+5y)/3y
(g ο f)¯¹(x) = (2+5x)/3x

(g ο f)¯¹(x+2) = (2+5(x+2))/(3(x+2)) 
= (2+5x+10)/(3x+6) 
= (5x+12)/(3x+6), x#-2

Soal 10
Fungsi f:R→R dan g:R→R dirumuskan dengan f(x)=2x-1 dan g(x)=3x+5, maka (g ο f)¯¹(a) = -2. Nilai a adalah…
Jawaban:
Jika f(x)=2x-1
g(x)=3x+5

(g ο f)(x) = g(f(x))
= g(2x-1)
= 3(2x-1)+5
= 6x-3+5
= 6x+2

Misalkan (g ο f)(x) = y
y=6x+2
6x = y-2
x = (y-2)/6
(g ο f)¯¹(x) = (x-2)/6

(g ο f)¯¹ (a) =-2
(a-2)/6 = -2
a-2 = -2(6)
a-2 = -12
a = -10

Soal 11
Jika (f ο g)(x) = 4x²+8x – 3 dan g(x)=2x+4 maka f¯¹(x) adalah…
Jawaban:
g(x)=2x+4
(f ο g)(x) = 4x²+8x – 3 
f( g(x) ) = 4x² + 8x – 3
f( 2x+4 ) = (2x+4)² - 4(2x+4) – 3
f(x) = x² - 4x – 3 
y = x²-4x-3
y = (x-2)² - 7
(x-2)² = y+7
x-2 = √(y+7)
x = 2+√(y+7)
f¯¹(x) = 2+√(x+7)

Soal 12
Diberikan fungsi f dan g dengan f(x)=2x+1 dan (f ο g)(x) = x/(x+1), x#-1, maka invers dari fungsi g(x) adalah…
Jawaban:

f(x)=2x+1
(f ο g)(x) = x/(x+1)
f( g(x) ) = x/(x+1)
2g(x) + 1 = x/(x+1)
2g(x) = [x/(x+1)] – 1 
2g(x) =   [x/(x+1)] – [(x+1)/(x+1)]
2g(x) = [(x-(x+1)]/(x+1)
2g(x) = -1/(x+1)
g(x) = -1/2(x+1)
g(x) = -1/(2x+2)

Untuk mencari g¯¹(x), misalkan g(x) = y
y = -1/(2x+2)
y(2x+2) = -1
2xy+2y = -1
2xy = -2y-1
x = (-2y-1)/2y

Dengan demikian
g¯¹(x) = (-2x-1)/2x

Soal 13
f(x) = x+2 untuk x>0, g(x) = 15/x untuk x>0. Dengan demikian (f¯¹ ο g¯¹)(x) = 1 untuk x sama dengan…
Jawaban:
Pertama
f(x) = x+2, x>0
Misalkan y=f(x)
y=x+2
x=y-2
f¯¹(x) = x-2

Kedua
g(x) = 15/x, x>0
misalkan y=g(x)
y=15/x
yx=15
x=15/y
g¯¹(x)=15/x

(f¯¹ ο g¯¹)(x) = 1
f¯¹(g¯¹(x) ) = 1
f¯¹(15/x) = 1
(15/x)-2 = 1
(15/x) –(2x/x) = 1
(15-2x)/x = 1
15-2x = x
-2x-x = -15
-3x = -15
x = 5


Comment Policy: Silahkan tuliskan komentar Anda yang sesuai dengan topik postingan halaman ini. Komentar yang berisi tautan tidak akan ditampilkan sebelum disetujui.
Buka Komentar
Tutup Komentar